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Proofthat 1l +1 =2

English Version
Introduction

The statement that \( 1 + 1 = 2\) is a fundamental truth in arithmetic. While it seems intuitive, a
rigorous proof requires a formal mathematical foundation. This proof was first systematically
developed in *Principia Mathematica* by Alfred North Whitehead and Bertrand Russell.

1. Definition of 1 and 2 in Set Theory

Using Peano arithmetic, numbers can be constructed from set theory:

\( 0) is defined as the empty set: \( 0 = \emptyset )
e \( 1)) is defined as the set containing \( 0\): \( 1 =\{0\} )
e \( 2\) is defined as the set containing \( 0\) and \( 1 \): \( 2 =\{0, 1\} )

Addition is defined recursively using Peano’s successor function:

e The successor of \( x \), denoted \( S(x) \), is defined as \( S(x) = x + 1)

2. Formal Proof

Using Peano’s axioms and the definition of addition:
\[1+1=5(1)\]

By definition, the successor of \( 1) is:

\[ S(1) = 21\]

Thus, we conclude:

\[1+1=2}\]
Conclusion

The proof that \( 1 + 1 = 2\) follows from the formal foundations of Peano arithmetic and set theory.
Though trivial in everyday usage, this formalization is essential for rigorous mathematical logic.
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Introduction

L'affirmation que \( 1 + 1 = 2\) est une vérité fondamentale en arithmétique. Bien que cela semble
évident, une démonstration rigoureuse nécessite des bases mathématiques formelles. Cette preuve a
été développée systématiquement dans les *Principia Mathematica* par Alfred North Whitehead et
Bertrand Russell.

1. Définition de 1 et 2 en Théorie des Ensembles
En utilisant I'arithmétique de Peano, les nombres peuvent étre construits a partir de la théorie des

ensembles :

e \( 0)\) est défini comme I'ensemble vide : \( 0 = \emptyset )
e \( 1\) est défini comme I'ensemble contenant \( 0\) : \( 1 =\{0\} )
¢ \( 2) est défini comme I'ensemble contenant\( 0\) et \(1\):\(2 =\{0, 1\} )

L'addition est définie récursivement via la fonction successeur de Peano :

» Le successeur de \( x \), noté \( S(x) \), est défini comme \( S(x) = x + 1)

2. Preuve Formelle

En utilisant les axiomes de Peano et la définition de I'addition :
\[1+1=5(1)\]

Par définition, le successeur de \( 1) est :

\[S(1) =21\]

Ainsi, nous obtenons :

V1+1=2\]
Conclusion

La démonstration que \( 1 + 1 = 2\) repose sur les fondements stricts de I'arithmétique de Peano et
de la théorie des ensembles. Bien que trivial en usage quotidien, cette formalisation est essentielle
pour la logiqgue mathématique rigoureuse.
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